Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.
نویسندگان
چکیده
High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment.
منابع مشابه
Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial...
متن کاملGenomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones
Genomic and pedigree predictions for grain yield and agronomic traits were carried out using high density molecular data on a set of 803 spring wheat lines that were evaluated in 5 sites characterized by several environmental co-variables. Seven statistical models were tested using two random cross-validations schemes. Two other prediction problems were studied, namely predicting the lines' per...
متن کاملWheat yield prediction modeling by soil properties: a case study in North-west of Iran
Crop yields are dependent on a number of factors such as soil type, weather conditions and farming practices. Crop yield estimates in different soil types are required to meet the needs of farmers, land appraisers, and governmental agencies in Iran as around the world. This study was conducted to model the wheat-grain yields [Triticum aestivum L.] by soil properties in Khoy area, the north-w...
متن کاملGenomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico
Developing genomic selection (GS) models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV) scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY), thousand-grain weight (GW), grain number (GN), and thermal time for flow...
متن کاملIdentification of genomic regions for grain yield and yield stability and their epistatic interactions
The task of identifying genomic regions conferring yield stability is challenging in any crop and requires large experimental data sets in conjunction with complex analytical approaches. We report findings of a first attempt to identify genomic regions with stable expression and their individual epistatic interactions for grain yield and yield stability in a large elite panel of wheat under mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The plant genome
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2017